Robust Unsupervised Multi-View Feature Learning With Dynamic Graph

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view Feature Learning with Discriminative Regularization

More and more multi-view data which can capture rich information from heterogeneous features are widely used in real world applications. How to integrate different types of features, and how to learn low dimensional and discriminative information from high dimensional data are two main challenges. To address these challenges, this paper proposes a novel multi-view feature learning framework, wh...

متن کامل

On multi-view feature learning

Sparse coding is a common approach to learning local features for object recognition. Recently, there has been an increasing interest in learning features from spatio-temporal, binocular, or other multi-observation data, where the goal is to encode the relationship between images rather than the content of a single image. We provide an analysis of multi-view feature learning, which shows that h...

متن کامل

Robust Unsupervised Feature Selection

A new unsupervised feature selection method, i.e., Robust Unsupervised Feature Selection (RUFS), is proposed. Unlike traditional unsupervised feature selection methods, pseudo cluster labels are learned via local learning regularized robust nonnegative matrix factorization. During the label learning process, feature selection is performed simultaneously by robust joint l2,1 norms minimization. ...

متن کامل

Unsupervised Feature Selection for Multi-View Data in Social Media

The explosive popularity of social media produces mountains of high-dimensional data and the nature of social media also determines that its data is often unlabelled, noisy and partial, presenting new challenges to feature selection. Social media data can be represented by heterogeneous feature spaces in the form of multiple views. In general, multiple views can be complementary and, when used ...

متن کامل

Unsupervised Multi-View Feature Selection via Co-Regularization

Existing unsupervised feature selection algorithms are designed to extract the most relevant subset of features that can facilitate clustering and interpretation of the obtained results. However, these techniques are not applicable in many real-world scenarios where one has an access to datasets consisting of multiple views/representations e.g. various omics profiles of the patients, medical te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2920330